Still using Jaeger/Sentry? Uptrace is an open source APM for OpenTelemetry that you can use to monitor applications and set up alerts to receive notifications via email, Slack, Telegram, and more.

Zero-downtime PostgreSQL migrations

Follow these simple rules to avoid common pitfalls and apply changes to your database without unplanned downtime.

Avoid long-running transactions

Running a migration in a transaction means that changes made within a transaction are not visible until the end of a transaction. That is exactly what we need when we apply a migration, but in practise it does not work well.

Using a transaction causes PostgreSQL to maintain two versions of a database for the duration of a transaction. One version with your changes and one without. PostgreSQL transactionsopen in new window are well-suited for such task but they have their limits too.

PostgreSQL also has to hold all the locks ackquired during a migration. For example, updating a row locks the row so your changes are not overwritten by another transaction. PostgreSQL releases the lock only in the end of a transaction. And if a concurrent transaction actually changes the same row migrations fails.

Using transactions only works well if your migration is small and fast (less than 5-10 seconds). Even for a medium database, using long transactions either makes a migration slower (in some cases 10x slower) or causes a migration to fail.

Split long-running queries into smaller batches

PostgreSQL runs every query in a transaction. So not using BEGIN and COMMIT does not imply that you are not using transactions. Meaning that you need to split long running queries into smaller ones and avoid large transactions for the reasons we discussed above.

For example, you need to update 1 million rows. Don't do it with a single UPDATE query. Instead split the job into 10 batches each containing 100k rows. And execute the same UPDATE query separately on each batch. Now you have 10 queries instead of 1, but you can be sure that migration will succeed.

Update rows in a consistent order

When possible, update rows in a consistent order. This helps avoiding deadlocks when 2 conurrent transactions try to update the same rows but in a different order.

For example, deadlock happens when transaction 1 locks row #1 and transaction 2 locks row #2. Now transaction 1 waits for a lock on row #2 and transaction 2 waits for a lock on row #1. They lock each other and PostgreSQL has to kill one of them.


-- transaction 1
UPDATE test WHERE id IN (1, 2);

-- transaction 2
UPDATE test WHERE id IN (2, 1);


-- transaction 1
UPDATE test WHERE id IN (1, 2);

-- transaction 2
UPDATE test WHERE id IN (1, 2);

The same rule applies when you are using INSERT ON CONFLICT DO UPDATE. In such case, you may need to sort rows before inserting them.

Don't add columns with NOT NULL

Queries like ADD column NOT NULL fail on tables that already have some rows. Because existing rows do not have values for the newly added column, PostgreSQL refuses to add the column.


ERROR:  column "foo" of relation "test" contains null values

Your alternatives are:

  1. Add a default value, for example, foo text NOT NULL DEFAULT ''.
  2. Drop NOT NULL althogether and add some validation against NULL elsewhere.
  3. Split the query into multiple migrations:
-- migration 1

-- migration 2
UPDATE test SET foo = '';

-- migration 3

See also

To monitor Bun performance, you can use OpenTelemetry instrumentation that comes with Bun and Uptrace.

Uptrace is an open source DataDog competitoropen in new window that supports OpenTelemetry tracingopen in new window, OpenTelemetry metricsopen in new window, and logs. You can use it to monitor applications and set up automatic alerts to receive notifications via email, Slack, Telegram, and more.

You can also check the following guides to monitor features specific to your RDBMS: